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Abstract

High-cardinality (nominal) categorical covariates are challenging in regression mod-
eling, because they lead to high-dimensional models. For example, in generalized
linear models (GLMs), categorical covariates can be implemented by dummy cod-
ing which results in high-dimensional regression parameters for high-cardinality
categorical covariates. It i1s difficult to find the correct structure of interactions in
high-cardinality covariates, and such high-dimensional models are prone to over-
fitting. Various regularization strategies can be applied to prevent over-fitting. In neural
network regressions, a popular way of dealing with categorical covariates is entity
embedding, and, typically, over-fitting is taken care of by exploiting early stopping
strategies. In case of high-cardinality categorical covariates, this often leads to a very
early stopping, resulting in a poor predictive model. Building on Avanzi et al. (ASTIN
Bull, 2024), we introduce new versions of random effects entity embedding of cat-
ecorical covariates. In particular, having a hierarchical structure in the categorical
covariates, we propose a recurrent neural network architecture and a Transformer
architecture, respectively, for random-effects entity embedding that give us very accu-
rate regression models.


https://link.springer.com/article/10.1007/s42081-024-00243-4
https://github.com/wueth/High-Cardinality-Covariates-Regularization
https://github.com/wueth/High-Cardinality-Covariates-Regularization

Outlook for the talk

Introduce methods for dealing with categorical covariates...

... With high cardinality = many levels

Discuss regularization to ensure the estimates have credibility

Discuss how to deal with categorical covariates with a natural hierarchy
Tools used: embeddings and deep learning

Show results on a simulated dataset



Agenda

 What are embeddings?

« GLMMs
* Let’s think Bayesian

 Hierarchical models based on embeddings



Pricing with categorical covariates

 Most insurance pricing datasets have a large number of categorical covariates in addition to continuous covariates

« Categorical covariates may also arise from pre-processing continuous covariates into categorical ones (binning),
e.g., age classes or vehicle power classes

« Simulated dataset used throughout as example

vehUse Town Drivage vehweight vehPower vehage vehBrand vehMmodel wvehDetail True

1 0 1 51 1730 169 3 ] Jb Jb4 (.13821475

2z 1 1 41 1760 249 Z K Kd Ka2z 0.11266030

3 0 1 23 1230 109 Z K. Kd Kad2 0.15726383

- 0 0 40 1010 54 S A Al Ads 0.00964301

> 0 0 43 2150 166 5 ) MC Mcd O0.11884314
199967 : 1 0 46 1460 161 Z E EC Ec3 0.09788983
199968 0 0 40 1230 92 2 C Ca Cad 0.0069953.247
199969 1 0 38 990 107 5 F Fb Fb2 ¢.10659886
1999/70: 1 1 37 1300 158 3 5 sd sdl ¢.12993712
199971 : 0 1 41 1100 91 3 A Ad Ad3 (0.08195614



GLMs with categorical covariates

« Actuarial pricing often uses GLMs which has a linear model form after applying the link function:
g_l(j\’) =PBo+P1.X1+ -+ ﬁq-xq
« Suppose x4 Is categorical (or continuous and was binned), then we can represent it in the GLM as

o+ 0 +--+Bgx;, whenx; =xg,

Po+ P12+ +PBgxq Whenx;=xq;

g ') =+

Lot PrL+ "t Pgxqg Whenxy=x,
* InaGLM, as we vary x; 1 = x1, our GLM value changes from O (reference level) to 1, (uses dummy coding)

* P coefficients are estimated directly from the data...
... Indeep learning, these coefficients called embeddings

 Thisis a 1-dimensional embedding while we can generalize things to multiple dimensions



GLM example

Simple GLM regressing TRUE frequency
from driver age...

... produces GLM coefficients which are:

* Pricing relativities
* 1D embeddings

Since output is frequency, coefficients can
be interpreted on frequency scale

In this case, DrivAge Is treated as categorical
whereas one could also treated It as
continuous =>

In that case it has only a single f coefficient

We present deep learning models and higher
dimensional embeddings
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fit = gIm(True ~ as.factor(Drivage)-1, data = dat)
coefs = Titicoefficients %=% data.table()
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GLM example (2)

« We dO not knOW the TRUE frequency, SO fit = gim(ClaimNb -~ as.factor(Drivage)-1, data = dat, family = poisson(link = "log"))
need to eStimate frOm (Very) nOisy coefs = fiticoefficients =% exp %=% data.table()
experience data N
« Example —where we have little exposure, 0-8]
we struggle to get accurate results of the
TRUE frequency o6 -

»  => (1) We may want to smooth rates out,

0.4 -

 Or (2) apply regularization — main theme "
of the paper, 0 . e

 Or (3) can smooth out by hand but: 30 50 70 90

Age
30 50
Age

5000 1

Highly manual and time consuming
Depends on expert judgement
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1000 -
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Two types of embeddings

 Continuous data that has been binned has a natural order (ordinal) — so one can smooth it by applying Fused
LASSO regularization, see example below.

« Categorical data does not have a natural order (hnominal) — so one needs to think about other approaches of
regularization, usually similar to credibility theory in some way.

Raw Smoothed
DrivAge_embed DrivAge_embed
[ ]
[ ]
[ ] [ ]
. 04,
0.5
¢ .
[ ]
. ' Weight Value Weight Value
: *f ' 08 '
ﬁ . L . L e - ﬁ 0. ..ululuuunuu. 04
= * e ow wot o . . o '
E L] ' LI o ] 04 E L]
L . ¢ ' "y » L . ' 032
] . e, ] .
& 00 . "l 0.0 > ! d :
. L] ]
= ! o * * . = e ST 0.0
. ' 'l:l‘d' . ] DE
[ ] & & =i,
o 0.0
.l ’ '
¥ ]
1.". .
[ ]
05 ! ‘ :
'DE 8 ]
[ ]
. appat?

0 20 40 60 80 0 20 40 60 80
Weight Index Weight Index



Deep learning - FCN generalizes GLM

Feature extractor

(Y
an

A fully connected network (FCN)
generalizes a GLM

Linear model

* [Intermediate layers = representation
learning, guided by supervised objective
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Embedding layer — categorical data

 One-hot encoding maps each categorical
level to a basis vector (0,...,0,1,0,...,0)

 One-hot encoding expresses a prior model
with categories being orthogonal => similar
levels are not categorized into groups

« Embedding layer — similar categories should
cluster together:

Learn dense vector transformation of
sparse input vectors and cluster similar
categories together

Actuary  Accountant Quant Statistician Economist Underwnter
Actuary 1 0 0 0 0 0
Accountant 0 1 0 0 0 0
Quant 0 0 1 0 0 0
Statistician 0 0 0 1 0 0
Economist 0 0 0 0 1 0
Underwnter 0 0 0 0 0 1
Finance Maths Statistics Liabilities
Actuary 0.5 0.25 0.5 0.5
Accountant 0.5 0 0 0
Quant 0.75 0.25 025 0
Statistician 0 0.5 0.85 0
Economist 0.5 0.25 0.5 0
Underwnter 0 0.1 0.05 0.75
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Modern ML relies on embeddings!

ML approaches rely on learning embeddings for
natural language processing (NLP) and applying
Transformers to these (ChatGPT)

Approach proposed in 2017 relies on attention
mechanisms

Extended to other tasks such as computer vision
and more recently, tabular data, Kuo-Richman.

Attention Is All You Need

Ashish Vaswani” MNoam Shareer” MNiki Parmar”® Jakob Uszkoreit™

Google Brain Google Brain Google Research Google Research

avaswani@google. com noam@google . com nikipBgoogle . com usz@google . com

)

ChatGPT

Llion Jones® Aidan N. Gomez* ' Fukasz Kaiser®
Google Research Unmiversity of Toronto Google Brain
1lliom@google.com aAaidan@cs.toronto.aedn lukaszkaiser@google. com

Illia Polosukhin® *
illia.polosukhin@gmail.com

ChatGPT

Get answers. Find inspiration.
Be more productive.

Free to use. Easy to try. Just ask and ChatGPT can
help with writing, learning, brainstorming, and more.

Download the app >
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What can go wrong with embeddings?

 We may have categorical variables where there are very few examples of each level A

 E.g.: Car vehicle brand/model/variant — lots of Kias but very few Abarths!
* Noisy data generated by claims process =>

 May not have enough credibility to set values of factor levels/embeddings appropriately

« Example from simulated data (colour = Vehicle Brand)
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GLMMs offer a solution

value

Generalized Linear Mixed Models (GLMMs) incorporate Buhlmann-Straub credibility to pool individual

coefficients towards the mean

A credibility solution looks like
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GLMMs offer a solution (2)

« What is the “mixed” model?

¢ GLMMs can include “normal” regression

coefficients that do not get a credibility Generalized Linear Mixed Models for Ratemaking: A Means

treatment = fixed effects of Introducing Credibility into a Generalized Linear Model
* |n addition, coefficients with a credibility Setting

treatment = random effects Fred Klinker, FCAS, MAAA

* The two together = mixed effects model

Abstract: GLMSs that include explanatory classification variables with sparsely populated levels assign large standard
errors to these levels but do not otherwize shrink estimates toward the mean in response to low credibility.
Accordingly, actuaries have attempted to superimpose credibility on a GLM setting, but the resulting methoeds do

° FO rmo re, sSee refe renc ed p ap er not appear to have caught on. The Generalized Linear Mixed Model (GLMM) is vet another way of introducing

credibilitv-like shrinkage toward the mean in a GLM setting. Recently available statistical software, such as 3AS

PROC GLIMMIX, renders these models more readily accessible to actuaries. This paper offers backsround on
GLMMSs and presents a case study displaving shrinkage towards the mean very sirmular to Buhlmann-Straub

 Disadvantages of GLMM framework: N

Kevwords: Credibility, Generalized Linear Models (GLMs), Linear AMized Effects (LME) models, Generalized
Linear Mized Models ({GLMMSs).

Slow, especially for complex models

May not always converge

« How can we incorporate similar ideas into neural
network models?
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GLMMs and Bayesian thinking

Bavyesian Updating: Prior, Likelihood, and Posterior

Bayesian explanation: models generally work by assuming that 0.8
coefficients follow a normal distribution with mean =0

Coefficients pulled towards zero unless there is enough
credibility for a non-zero value of the MLE derived coefficient

log f3 (Y, U) = Ly (#|U) + log 7 (U)

0.6

Can fit GLMMs using Bayesian methods such as MCMC... Z
... but these are too slow for complex models such as networks
Closed form solutions (i.e. credibility formula) only available In
simple selected cases 0.2
Need to rely on approximations to the Bayesian approach
« Maximum a posteriori estimation (MAP) 0.0 -
* Variational inference (VI) - . O -

YValue

type Likelihood - Fosterior - Frior



MAP estimation

 Equivalent to (L2) ridge regularization

 Adds a penalty term to the log-likelihood to force coefficients
towards to mean of the prior function —which is O

0.75

|« I ¢ 2
— i | Yi h (NNg(xj,uir7)) —« (7 (NNy(x;, uj u;p; 1
p ; v; [ i h (NN (xj.ujip) — « (2 (NNp (xi, ujpip))) P |ujiin | _
 Reqgularization strength inversely proportional to case weights b
=> |[ow exposure means more regularization o
 Penalizes large embedding values for rare categories more
strongly (towards zero) 025

« Simple to implement and computationally efficient

0.00

Random Effects Entity Embedding
Regularization via Variational Inference

Prior/\V]l Mean

Regularixgtion

Likelihoo:ad Mean

<

\

0
Parameter Value

type — Likelihood = PriorMIN(0,1)
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Variational inference

Bayesian Updating: Prior, Likelihood, and Posterior

« Variational inference (VI): Approximate the true intractable
posterior distribution by a tractable distribution o8

 This approximation is called variational density

« Usually a Gaussian variational density to the posterior Is 0.6
selected (only involves mean and variance parameters)

 The quality of the approximation is measured by the ~
Kullback-Leibler (KL) divergence 2.

 This leads to a tractable framework which can efficiently be
fitted by Monte Carlo sampling and gradient descent

 The solution is similar to MAP but one also receive
uncertainty estimates
MAP is similar to first order Taylor approximation
VI considers higher order terms

YValue

type Likelihood - Fosterior - Frior



Putting It together

Embeddings can be used to capture

complex high dimensional information

about categorical covariates...

network predictions

l H
PP

=1

... With the risk of overfitting to the noise,
particularly, when there is high cardinality

Developed Bayesian methods to
credibility weighted embeddings towards
zero, which depend on exposures

Incorporate these into a deep neural
network so that both continuous and
categorical covariates can contribute to

random effects
embedding of
categorical covariates

continuous covariates

concatenate

Diagram of network used shown on right

l

deep neural network

I:}’}' h (NNI}{II' . llj[g]}) — K (h (NNT}(I,', llj[f']}))

w1 2

¢ )
= [wjn]
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Results

 Recall that we know the TRUE frequency from the simulated dataset

* Fit basic neural network with embeddings (2D) and a LightGBM. Note that network suffers with VehDetail!

average KL divergence
network LightGBM

(0) null model (empirical mean) 1.0342 1.0342

(0) w/o categorical covariates 0.3947 (.3958

(1) with VehBrand 0.2622 0.2763

(1) with VehModel 0.2188 0.2499

(1) with VehDetail 0.2615 0.2240

(2) with VehBrand, VehModel 0.2312 0.2618

(3) with VehBrand, VehModel, VehDetail 0.2694 0.2191

 Adding regularization to the network produces excellent results; VI slightly better than MAP
average KL divergence

network
(2) no regularization: with VehBrand, VehModel 0.2312
(2) MAP regularization: with VehBrand, VehModel 0.2212
(2) VI regularization: with VehBrand, VehModel 0.2331
(3) no regularization: with VehBrand, VehModel, VehDetail 0.2694
(3) MAP regularization: with VehBrand, VehModel, VehDetail 0.1446
(3) VI regularization: with VehBrand, VehModel, VehDetail 0.1410

22
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Hierarchical categorical data

« Above, we have treated the embeddings
representing brand/model/variant of the vehicle

independently
... BUT we know we have a hierarchical structure — @
cannot have a Toyota model under a Ford make!
« How can we exploit this known structure to @ @

Improve our models?
« A good way to think about this is that each level @ @ @ @ @ ® @

adds a new level of detail to the previous level => Fig. 3 Dmendmmfﬂg )¢ AD with T = 3 generations

Model the incremental information added in
each level => cluster embeddings around
previous level, e.g., vehicle model clusters

around the car brand it belongs to. &U) (1’} u(.r_l)*, ..
Jt J'r Ji—11Jt 1



Models for hierarchical embeddings

« We have some options for processing hierarchical
embeddings:

e This has the same structure as a time-series!

Fig.3 Descendants of r}%” e AW withT =3 generations

 (a) Use arecurrent neural network (down the tree)
 (b) Use a Transformer (is not causal)

 Apply either MAP or VI regularization

random ettects

embedding of
categorical covariates

‘"
—~
/
]

> .
~ = e
'

recurrent network

k8
unﬂ Y

A

)

T 0 input

~L ‘
Uk o

Uy i

deep neural network

continuous covariates

concatenate
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Results

* Only fit models using MAP as the previous results show VI doesn’t make a huge difference

 Results show that incorporating hierarchical approaches improves on previous models!

MAP case

KL div.
(2) non-hierarchical: with VehBrand, VehModel 0.2212
(2) RNN layer: with VehBrand, VehModel 0.2222
(2) Transformer layer: with VehBrand, VehModel 0.2041
(3) non-hierarchical: with VehBrand. VehModel, VehDetail 0.1446
(3) RNN layer: with VehBrand, VehModel, VehDetail 0.1354
(3) Transformer layer: with VehBrand, VehModel, VehDetail 0.1294

 Evolution of embeddings

Hierarchical H1 embedding weights: VehBrand Hierarchical H1: VehBrand + VehModel Hierarchical H1: VehBrand + VehModel + Veh Detail

2nd component

000 005
|

=005
]

=010

<015
]

L
2nd component

T
=0.15

T
=0.10

T T T
=i 05 0.00 0.05

15t component

008

000
1

=010

<015

=005
]

T
=0.15

T T T T
=0.10 =105 0,00 0.05

1st component

2nd component

005

000
|

=010

<015
]

=005
]

T
=0.15

T
=0.10

T T
=05 0.00

15t component

0.05

26



Summary

High-cardinality categorical variables pose significant challenges in regression modeling, particularly in insurance

pricing

Entity embedding coupled with regularization techniques offers a powerful solution to handle these variables In
neural network models

Two main regularization approaches were explored: MAP estimation and Variational Bayesian inference
Hierarchical structures in categorical variables can be leveraged to further improve model performance

RNN and Transformer architectures show promise in processing hierarchical categorical data

27
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