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• Joint work with Ronald Richman (Old Mutual Insure)

• Paper: High-cardinality categorical covariates in network 

regressions

• Available for free from: 

https://link.springer.com/article/10.1007/s42081-024-00243-4

• Code: https://github.com/wueth/High-Cardinality-Covariates-

Regularization

Background
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https://link.springer.com/article/10.1007/s42081-024-00243-4
https://github.com/wueth/High-Cardinality-Covariates-Regularization
https://github.com/wueth/High-Cardinality-Covariates-Regularization


Outlook for the talk
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• Introduce methods for dealing with categorical covariates…

• … with high cardinality = many levels

• Discuss regularization to ensure the estimates have credibility

• Discuss how to deal with categorical covariates with a natural hierarchy

• Tools used: embeddings and deep learning

• Show results on a simulated dataset



Agenda

• What are embeddings?

• GLMMs

• Let’s think Bayesian

• Hierarchical models based on embeddings



• Most insurance pricing datasets have a large number of categorical covariates in addition to continuous covariates

• Categorical covariates may also arise from pre-processing continuous covariates into categorical ones (binning), 

 e.g., age classes or vehicle power classes

• Simulated dataset used throughout as example

Pricing with categorical covariates
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• Actuarial pricing often uses GLMs which has a linear model form after applying the link function:

𝒈−𝟏 ෝ𝒚 = 𝜷𝟎 + 𝜷𝟏. 𝒙𝟏 + ⋯ + 𝜷𝒒. 𝒙𝒒

• Suppose 𝐱𝟏 is categorical (or continuous and was binned), then we can represent it in the GLM as

𝒈−𝟏(ෝ𝒚) =

𝜷𝟎 + 𝟎 + ⋯ + 𝜷𝒒. 𝒙𝒒 𝒘𝒉𝒆𝒏 𝒙𝟏 = 𝒙𝟏,𝟏

𝜷𝟎 + 𝜷𝟏,𝟐 + ⋯ + 𝜷𝒒. 𝒙𝒒 𝒘𝒉𝒆𝒏 𝒙𝟏 = 𝒙𝟏,𝟐

 

𝜷𝟎 + 𝜷𝟏,𝑳 + ⋯ + 𝜷𝒒. 𝒙𝒒 𝒘𝒉𝒆𝒏 𝒙𝟏 = 𝒙𝟏,𝑳

• In a GLM, as we vary 𝒙𝟏,𝟏 → 𝒙𝟏,𝟐 our GLM value changes from 0 (reference level) to 𝜷𝟏,𝟐 (uses dummy coding)

• 𝜷 coefficients are estimated directly from the data…

• … in deep learning, these coefficients called embeddings

• This is a 1-dimensional embedding while we can generalize things to multiple dimensions

GLMs with categorical covariates
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GLM example
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• Simple GLM regressing TRUE frequency 

from driver age…

• … produces GLM coefficients which are:

• Pricing relativities
• 1D embeddings

• Since output is frequency, coefficients can 

be interpreted on frequency scale

• In this case, DrivAge is treated as categorical 

whereas one could also treated it as 

continuous =>

• In that case it has only a single 𝜷 coefficient

• We present deep learning models and higher 

dimensional embeddings



GLM example (2)
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• We do not know the TRUE frequency, so 

need to estimate from (very) noisy 

experience data

• Example – where we have little exposure, 

we struggle to get accurate results of the 

TRUE frequency

• => (1) We may want to smooth rates out,

• Or (2) apply regularization – main theme 

of the paper,

• Or (3) can smooth out by hand but:

Highly manual and time consuming
Depends on expert judgement
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Two types of embeddings
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• Continuous data that has been binned has a natural order (ordinal) – so one can smooth it by applying Fused 

LASSO regularization, see example below.

• Categorical data does not have a natural order (nominal) – so one needs to think about other approaches of 

regularization, usually similar to credibility theory in some way.



• A fully connected network (FCN) 

generalizes a GLM

• Intermediate layers = representation 

learning, guided by supervised objective

• Last layer = generalized linear model 

(GLM), where input variables = new 

representation of data (from feature 

extractor)

• No need to use GLM – strip off last layer 

and use learned features in, for 

example, XGBoost regression

Deep learning - FCN generalizes GLM
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• One-hot encoding maps each categorical 

level to a basis vector (0,...,0,1,0,...,0)

• One-hot encoding expresses a prior model 

with categories being orthogonal => similar 

levels are not categorized into groups

• Embedding layer – similar categories should 

cluster together:

Learn dense vector transformation of 
sparse input vectors and cluster similar 
categories together

Embedding layer – categorical data
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• ML approaches rely on learning embeddings for 

natural language processing (NLP) and applying 

Transformers to these (ChatGPT)

• Approach proposed in 2017 relies on attention 

mechanisms

• Extended to other tasks such as computer vision 

and more recently, tabular data, Kuo-Richman.

Modern ML relies on embeddings!
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Agenda

• What are embeddings?

• GLMMs

• Let’s think Bayesian

• Hierarchical models based on embeddings



• We may have categorical variables where there are very few examples of each level

• E.g.: Car vehicle brand/model/variant – lots of Kias but very few Abarths!

• Noisy data generated by claims process => 

• May not have enough credibility to set values of factor levels/embeddings appropriately

• Example from simulated data (colour = Vehicle Brand)

What can go wrong with embeddings?
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• Generalized Linear Mixed Models (GLMMs) incorporate Bühlmann-Straub credibility to pool individual 

coefficients towards the mean

• A credibility solution looks like

𝜷𝒊,𝒄𝒓𝒆𝒅𝒊𝒃𝒊𝒍𝒊𝒕𝒚 = 𝒛 ∗ 𝜷𝒊 + 𝟏 − 𝒛 ∗ 𝜷

GLMMs offer a solution
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• What is the “mixed” model?

• GLMMs can include “normal” regression 
coefficients that do not get a credibility 
treatment = fixed effects

• In addition, coefficients with a credibility 
treatment = random effects

• The two together = mixed effects model

• For more, see referenced paper

• Disadvantages of GLMM framework:

Slow, especially for complex models
May not always converge

• How can we incorporate similar ideas into neural 

network models?

GLMMs offer a solution (2)
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Agenda

• What are embeddings?

• GLMMs

• Let’s think Bayesian

• Hierarchical models based on embeddings



• Bayesian explanation: models generally work by assuming that 

coefficients follow a normal distribution with mean = 0

• Coefficients pulled towards zero unless there is enough 

credibility for a non-zero value of the MLE derived coefficient

• Can fit GLMMs using Bayesian methods such as MCMC…

• … but these are too slow for complex models such as networks

• Closed form solutions (i.e. credibility formula) only available in 

simple selected cases

• Need to rely on approximations to the Bayesian approach

• Maximum a posteriori estimation (MAP)
• Variational inference (VI)

GLMMs and Bayesian thinking

18



• Equivalent to (L2) ridge regularization

• Adds a penalty term to the log-likelihood to force coefficients 

towards to mean of the prior function – which is 0

• Regularization strength inversely proportional to case weights 

=> low exposure means more regularization

• Penalizes large embedding values for rare categories more 

strongly (towards zero)

• Simple to implement and computationally efficient

MAP estimation
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Regularization via Variational Inference

Random Effects Entity Embedding



• Variational inference (VI): Approximate the true intractable 

posterior distribution by a tractable distribution

• This approximation is called variational density

• Usually a Gaussian variational density to the posterior is 

selected (only involves mean and variance parameters)

• The quality of the approximation is measured by the 

Kullback-Leibler (KL) divergence

• This leads to a tractable framework which can efficiently be 

fitted by Monte Carlo sampling and gradient descent

• The solution is similar to MAP but one also receive 

uncertainty estimates

 MAP is similar to first order Taylor approximation

 VI considers higher order terms

Variational inference

20



• Embeddings can be used to capture 

complex high dimensional information 

about categorical covariates…

• … with the risk of overfitting to the noise, 

particularly, when there is high cardinality

• Developed Bayesian methods to 

credibility weighted embeddings towards 

zero, which depend on exposures

• Incorporate these into a deep neural 

network so that both continuous and 

categorical covariates can contribute to 

network predictions

• Diagram of network used shown on right

Putting it together
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• Recall that we know the TRUE frequency from the simulated dataset

• Fit basic neural network with embeddings (2D) and a LightGBM. Note that network suffers with VehDetail!

• Adding regularization to the network produces excellent results; VI slightly better than MAP

Results
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Agenda

• What are embeddings?

• GLMMs

• Let’s think Bayesian

• Hierarchical models based on embeddings



• Above, we have treated the embeddings 

representing brand/model/variant of the vehicle 

independently…

• … BUT we know we have a hierarchical structure – 

cannot have a Toyota model under a Ford make!

• How can we exploit this known structure to 

improve our models?

• A good way to think about this is that each level 

adds a new level of detail to the previous level =>

Model the incremental information added in 
each level => cluster embeddings around 
previous level, e.g., vehicle model clusters 
around the car brand it belongs to.

Hierarchical categorical data 
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• We have some options for processing hierarchical 

embeddings:

• This has the same structure as a time-series!

• (a) Use a recurrent neural network (down the tree)

• (b) Use a Transformer (is not causal)

• Apply either MAP or VI regularization

Models for hierarchical embeddings
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• Only fit models using MAP as the previous results show VI doesn’t make a huge difference

• Results show that incorporating hierarchical approaches improves on previous models!

• Evolution of embeddings

Results
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• High-cardinality categorical variables pose significant challenges in regression modeling, particularly in insurance 

pricing

• Entity embedding coupled with regularization techniques offers a powerful solution to handle these variables in 

neural network models

• Two main regularization approaches were explored: MAP estimation and Variational Bayesian inference

• Hierarchical structures in categorical variables can be leveraged to further improve model performance

• RNN and Transformer architectures show promise in processing hierarchical categorical data

Summary
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